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Abstract. We present a theoretical reappraisal of the branching ratios and CP asymmetries for the
decays B → Xq`

+`−, with q = d, s, taking into account current theoretical uncertainties in the de-
scription of the inclusive decay amplitudes from the long-distance contributions, an improved treat-
ment of the renormalization scale dependence, and other parametric dependencies. Concentrating on
the partial branching ratios ∆B(B → Xq`

+`−), integrated over the invariant dilepton mass region
1 GeV2 ≤ s ≤ 6 GeV2, we calculate theoretical precision on the charge-conjugate averaged partial branch-
ing ratios 〈∆Bq〉 = (∆B(B → Xq`

+`−) + ∆B(B̄ → X̄q`
+`−))/2, CP asymmetries in partial decay rates

(aCP )q = (∆B(B → Xq`
+`−) − ∆B(B̄ → X̄q`

+`−))/(2〈∆Bq〉), and the ratio of the branching ratios
∆R = 〈∆Bd〉/〈∆Bs〉. For the central values of the CKM parameters, we find 〈∆Bs〉 = (2.22+0.29

−0.30) × 10−6,
〈∆Bd〉 = (9.61+1.32

−1.47) × 10−8, (aCP )s = −(0.19+0.17
−0.19)%, (aCP )d = (4.40+3.87

−4.46)%, and ∆R = (4.32 ± 0.03)%.
The dependence of 〈∆Bd〉 and ∆R on the CKM parameters is worked out and the resulting constraints
on the unitarity triangle from an eventual measurement of ∆R are illustrated.

1 Introduction

With the advent of new and upgraded experimental fa-
cilities in the coming year(s), flavour physics involving B
decays will come under minute experimental and theo-
retical scrutiny. The overriding interest in these experi-
ments is in measuring CP-violating asymmetries in partial
B-decay rates, which will allow us to quantitatively test
the Kobayashi-Maskawa [1] paradigm of CP violation. In
addition, the large number of B hadrons anticipated to
be produced at these facilities (estimated to be O(108) -
O(1012)) will allow us to measure a number of flavour-
changing-neutral-current (FCNC) processes involving the
transitions b → sX and b → dX, with X = γ, g, `+`−, νν̄,
andB0 -B0 mixings. In the context of the Standard Model
(SM), FCNC decays and mixings measure the Cabibbo-
Kobayashi-Maskawa (CKM) [1] matrix elements, in par-
ticular Vtd, Vts and Vtb. These quantities can, in principle,
also be measured directly in top quark decays t → qiW

+,
with qi = d, s, b. A comparison of these matrix elements
in the FCNC processes and direct measurements in t de-
cays would provide one of the best strategies to search for
new physics in B decays. So far, only Vtb has been directly
measured at Fermilab, yielding |Vtb| = 0.99 ± 0.15 [2].
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Present knowledge of Vtd owes itself to the measure-
ments of ∆Md, the mass difference in the B0 - B0 com-
plex. With the current world average∆Md = 0.471±0.016
(ps)−1, the error on Vtd is dominated by theoretical un-
certainty on the hadronic matrix element fBd

√
BBd

, for
which present Lattice-QCD estimates are fBd

√
BBd

=
215 ± 35 MeV [3], yielding 0.0065 ≤ |VtdV ∗

tb| ≤ 0.010. We
also mention that a single event for the charged kaon de-
cay mode K+ → π+νν̄ reported by the Brookhaven E787
experiment, yielding B(K+ → π+νν̄) = (4.2+9.7

−3.5)×10−10,
allows one to infer 0.006 ≤ |VtdV ∗

tb| ≤ 0.06 [4]. The branch-
ing ratio for the decay B → Xsγ has led to a determi-
nation of the matrix element Vts [5], yielding |VtsV ∗

tb| =
0.0035 ± 0.004, with the error dominated by the experi-
mental error on the branching ratio B(B → Xs + γ) [6,7].
These numbers can be taken as the measurements of |Vtd|
and |Vts| by assuming the value Vtb ' 1 from the CKM
unitarity, which holds to a very high accuracy [8].

In this paper, we pursue the idea of measuring the
FCNC semileptonic decays B → Xs`

+`− and B →
Xd`

+`−, below the J/ψ- and above the ρ, ω-resonance re-
gions in the dilepton invariant mass, to determine |Vts|
and |Vtd|, respectively, and the ratio |Vtd/Vts| from the
ratio of the branching ratios. In this context, these decays
and the related ones, B → Xsνν̄ and B → Xdνν̄, were
discussed some time ago [9]. The decays B → (Xs, Xd)νν̄
are practically free of long-distance complications [10] and
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the renormalization-scale dependence of the decay rates
has also been brought under control [11]. Hence, these de-
cays are theoretically remarkably clean but, unfortunately,
they are difficult to measure in Υ (4S) decays and out of
the question in hadronic collisions. Using the missing en-
ergy technique and LEP I data, the ALEPH collaboration
has searched for the decays B → Xsνν̄ setting an upper
bound B(B → Xsνν̄) < 7.7 × 10−4 (at 90% C.L.) [12],
which is a factor of 20 away from the SM expectations
[11]. While the discovery of these decays looks formidable
elsewhere, a high luminosity Z0-factory – which is being
discussed in conjunction with an e+e− linear collider [13]
– looks like having the best chance of measuring them.
This possibility deserves a dedicated study.

The possibility of determining |Vtd/Vts| from the ratio
of the invariant mass decay distributions dR

ds ≡ dB
ds [B →

Xd`
+`−]/dBds [B → Xs`

+`−] apart from the resonances
was revisited by Kim, Morozumi and Sanda [14]. These
authors included the effects of the leading order power
corrections (in 1/m2

b) in the short-distance part of the
dilepton invariant mass distribution and the long-distance
contributions from the cc̄-resonances, calculated in [15].
(For earlier-vintage derivations without the power correc-
tions, see [16,17].) We reanalyze the decays B → Xs`

+`−
and B → Xd`

+`− and the ratio of the branching ratios
∆R ≡ ∫

dsdBds [B → Xd`
+`−]/

∫
dsdBds [B → Xs`

+`−], in-
tegrated over a kinematic range q2min ≤ s ≤ q2max, de-
signed to minimize the resonant contribution. Our theo-
retical treatment differs from that of [14] in a number of
ways, summarized below.
– The dilepton invariant mass distributions in B → (Xs,
Xd)`+`− can be calculated in the context of the heavy
quark effective theory (HQET) as a power expansion
in regions far from the resonances, thresholds and end-
points [15,10]. Apart from the J/ψ, ψ′, ...-resonances,
the 1/m2

c-expansion provides, in principle, a viable de-
scription of the non-perturbative contributions arising
from the cc̄-loop [10]. The contribution of the light
quark qq̄-loops, which is not CKM-suppressed in the
decay B → Xd`

+`−, can likewise be calculated by
making an expansion of the decay amplitudes in
Λ2
QCD/q

2 in regions of the dilepton squared mass sat-
isfying q2 � Λ2

QCD. Thus, the HQET framework pro-
vides an evaluation of the invariant dilepton mass spec-
trum in these processes with the present precision lim-
ited to the leading power corrections in 1/m2

b , 1/m2
c

and Λ2
QCD/q

2. We present HQET-based calculations
of the decay rates, CP asymmetries and the ratio ∆R.

– Apart from the resonances and the end-points, the
power corrections in 1/m2

b calculated in HQET and
in explicit wave function models, such as the Fermi
motion (FM) model [18], yield very similar invariant
dilepton mass [15] and hadron energy distributions [19]
in the decays B → Xq`

+`−. However, it is known that
there are marked differences in estimates of the non-
perturbative cc̄-contribution, obtained by using the
1/m2

c-corrections in the HQET approach and alterna-
tive methods based on the Breit-Wigner-shaped res-
onant amplitudes [20,21]. Data may eventually help

to discriminate between some of these approaches, but
currently at least four different variations on this theme
exist in the literature [10,15,22,23]. This LD-uncer-
tainty therefore compromises theoretical precision on
decay rates and has to be taken into account. We cal-
culate the theoretical uncertainties on the branching
ratios for the decays B → (Xd, Xs)`+`−, CP asymme-
tries and the ratio ∆R, numerically showing their im-
pact on the determination of |Vts|, |Vtd| and the CKM-
Wolfenstein parameters ρ and η [24] from an eventual
measurement of these decays.

– We reanalyze the renormalization scale dependence in
the branching ratios for the decays B → Xs`

+`− and
B → Xd`

+`−, using the method employed by Kagan
and Neubert in the radiative decay B → Xs + γ [25].
This approach avoids accidental cancellations among
the individual scale-dependent contributions but gives
a larger scale (µ)-dependence of the branching ratios
than the method of evaluating the same in the total
branching ratio [14]. The former is probably a more
realistic estimate of the neglected higher order correc-
tions.

We find that the partial branching ratio in the SM is
uncertain by typically ±13% (±15%) for the decay B →
Xs`

+`− (B → Xd`
+`−), but the ratio ∆R is remarkably

stable with a typical error of less than several percent.
Hence, ∆R is well-suited to determine the ratio |Vtd/Vts|.
However, the scale-dependence of the CP asymmetries in
B → (Xs, Xd)`+`− is found to be huge, reflecting the
(present) leading logarithmic theoretical accuracy of the
CP-odd parts of the amplitudes. Without the power cor-
rections and fixing the scale to µ = mb, the CP asym-
metries in question have been studied earlier in [26]. We
point out that these estimates are uncertain by almost
±100% due to the sensitive scale-dependence, and their
stabilization requires next-to-leading order corrections. In
the case of the CP-even parts, we recall that the inclusion
of the explicit O(αs) corrections in the matrix elements
has reduced the scale dependence of the decay rates con-
siderably [27,28].

This paper is organized as follows: In Sect. 2, we briefly
review the derivation of the matrix elements and dilepton
invariant mass distributions for the decays B → (Xs, Xd)
`+`− including long-distance contributions in the four ap-
proaches: (i) AMM [17,15], (ii) KS [22], (iii) LSW [23], and
(iv) HQET [10]. The partially integrated branching ratios
and CP asymmetries are presented in Sect. 3 where we
also specify our input parameters. We show the scale de-
pendence of the branching ratios ∆B(B̄ → X̄s`

+`−) and
∆B(B̄ → X̄d`

+`−) in the AMM approach and the contri-
butions arising from the individual Wilson coefficients. We
also present a comparative numerical study of the quan-
tities 〈∆Bs〉, 〈∆Bd〉, (aCP )s and (aCP )d in the four men-
tioned approaches. Uncertainties arising from the other
parameters (mb, mt and Λ

(5)
QCD) are worked out numeri-

cally. With this we calculate the overall theoretical errors
in these quantities and the ratio ∆R and their impact on
the determination of the CKM parameters. Finally, Sect. 4
contains a brief comparison of the theoretical precision of
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|Vtd/Vts| in the decays B → (Xs, Xd)`+`− with that of
other methods proposed in the literature to determine the
same ratio.

2 B → (Xd, Xs)`+`− decays
in the effective Hamiltonian approach

We work with the effective Hamiltonian approach, which
is based on integrating out the heavy degrees of freedom
(t,W±, Z0) in the SM. The resulting effective Hamiltonian
for the decays B → (Xd, Xs)`+`−, Heff (b → q`+`−), can
be expressed as follows:

Heff (b → q`+`−) = −4GF√
2
V ∗
tqVtb

10∑
i=1

CiOi (1)

+
4GF√

2
V ∗
uqVub

[
C1(O1

(u) −O1) + C2(O2
(u) −O2)

]
,

where Vij are the CKM matrix elements. The Ci are the
Wilson coefficients, which depend, in general, on the renor-
malization scale µ, except for C10, and can be seen in a
leading logarithmic approximation in [27]. The operators
are defined as follows:

O1 = (q̄LαγµbLα)(c̄LβγµcLβ) ,
O2 = (q̄LαγµbLβ)(c̄LβγµcLα) ,

O3 = (q̄LαγµbLα)
∑

q′=u,d,s,c,b

(q̄′
Lβγ

µq′
Lβ) ,

O4 = (q̄LαγµbLβ)
∑

q′=u,d,s,c,b

(q̄′
Lβγ

µq′
Lα) ,

O5 = (q̄LαγµbLα)
∑

q′=u,d,s,c,b

(q̄′
Rβγ

µq′
Rβ) ,

O6 = (q̄LαγµbLβ)
∑

q′=u,d,s,c,b

(q̄′
Rβγ

µq′
Rα) ,

O7 =
e

16π2 q̄ασµν(mbR+mqL)bαFµν ,

O8 =
g

16π2 q̄αT
a
αβσµν(mbR+mqL)bβGaµν ,

O9 =
e2

16π2 q̄αγ
µLbα ¯̀γµ` ,

O10 =
e2

16π2 q̄αγ
µLbα ¯̀γµγ5` , (2)

where L and R denote chiral projections, L(R) = 1/2(1∓
γ5). Here, unitarity of the CKM matrix has been used in
writing the flavour structure of a generic FCNC b → q
transition amplitude T (q) in the form

T (q) =
∑

i=u,c,t

λ
(q)
i Ti = λ

(q)
t (Tt − Tc) + λ(q)

u (Tu − Tc) , (3)

where λ(q)
i = V ∗

iqVib and q = d, s. For the b → s transitions,

the second term in (3) can be safely neglected as λ(s)
u �

λ
(s)
t . However, for the b → d transitions, the CKM factors

λ
(d)
u and λ

(d)
t are of the same order and hence all terms

in (3) must be kept. The operator basis given in (1) has
been written in accordance with (3) and includes the
Four-Fermi operators containing a uū pair,

O1
(u) = (q̄LαγµbLα)(ūLβγµuLβ) ,

O2
(u) = (q̄LαγµbLβ)(ūLβγµuLα) . (4)

The matrix element for the decays b → q`+`− (q =
d, s) can be written as

M(b → q`+`−)

=
GFα√

2π
V ∗
tqVtb

[(
Ceff

9q − C10

)
(q̄ γµ L b)

(¯̀γµ L `
)

+
(
Ceff

9q + C10

)
(q̄ γµ L b)

(¯̀γµR`
)

− 2Ceff
7

(
q̄ i σµν

qν

q2
(mqL+mbR) b

) (¯̀γµ `
)]

. (5)

Here qν ≡ pν+ + pν− denotes the Four-momentum of the
invariant dilepton system, where p± are the corresponding
momenta of the `±; s ≡ q2 is the invariant dilepton mass
squared. The effective coefficients of O9 are given by

Ceff
9q (ŝ) = C9η(ŝ) + Y q(ŝ) . (6)

The functions η(ŝ) and Y q(ŝ) represent the O(αs) cor-
rection [29] and the (perturbative) one loop matrix el-
ement of the Four-Fermi operators [27,28], respectively.
We have in the (naive dimensional regularization) NDR-
scheme, which we use throughout our work,

Y q(ŝ) = g(m̂c, ŝ) (3C1 + C2 + 3C3 + C4 + 3C5 + C6)

− 1
2
g(1, ŝ) (4C3 + 4C4 + 3C5 + C6)

− 1
2
g(0, ŝ) (C3 + 3C4)

+
2
9

(3C3 + C4 + 3C5 + C6)

− V ∗
uqVub

V ∗
tqVtb

(3C1 + C2)(g(0, ŝ) − g(m̂c, ŝ)) , (7)

where we have introduced the dimensionless variable ŝ ≡
q2/m2

b and m̂c ≡ mc/mb. The functions η(ŝ) and g(z, ŝ)
can be seen elsewhere [27,20]. Note that the renormal-
ization scheme-dependence of the function Y q(ŝ) cancels
with the corresponding one in C9. The effective coefficient
of the bsγ vertex is given by Ceff

7 = C7 − C5/3 − C6 [30].
The dilepton invariant mass spectrum including power

corrections in the HQET approach in B → Xq`
+`−decays

can be written as:

dB
dŝ

=
dB0

dŝ
+
dB1/m2

b

dŝ
+
dB1/q2

dŝ
, (8)

where the first term corresponds to the parton model [27,
28], the second term accounts for the O(1/m2

b) power
corrections [15], and the last term accounts for the non-
perturbative interaction of a virtual uū- and cc̄-quark loop
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with soft gluons. The explicit expression for dB1/q2/dŝ for
mq = 0 can be deduced from the literature [10]

dB1/q2

dŝ
= − B0C2λ2

32
27

(1 − ŝ)2 (9)

×Re
{[
Ceff∗

7
(1 + 6ŝ− ŝ2)

ŝ
+ C

eff(0)∗
9q (ŝ)(2 + ŝ)

]

×
[
F (s,mc)
m2
c

− λ
(q)
u

λ
(q)
t

(
F (s,mu)
m2
u

− F (s,mc)
m2
c

)

]

+ [(3C1 + C2)(g(0, ŝ) − g(m̂c, ŝ))]
∗ (2 + ŝ)

×
[
|λ

(q)
u

λ
(q)
t

|2(F (s,mu)
m2
u

− F (s,mc)
m2
c

) − λ
(q)
u

λ
(q)
t

F (s,mc)
m2
c

]}
.

The branching ratio for B → Xq`
+`−is expressed in terms

of the measured semileptonic branching ratio Bsl for the
decays B → Xc`ν`. This fixes the normalization

B0 ≡ Bsl 3α2

16π2

|V ∗
tqVtb|2
|Vcb|2

1
f(m̂c)κ(m̂c)

, (10)

where f(m̂c), κ(m̂c) can be seen, for example, in [15]. The
function F (s,m) ≡ F (r) with r = s/(4m2) is given in [10].
In the region r � 1, F (s,mu)/m2

u ∝ 1/s. The condition
r � 1 is well satisfied, for example, for q2 ≥ 1.0 GeV2

(for which r > 25). In this region, the operator product
expansion (OPE) is not in 1/m2

u but in Λ2
QCD/q

2. Hence,
there is a sufficiently large region in q2 where the OPE
holds in 1/m2

b , 1/m2
c and Λ2

QCD/q
2. Note also that for

the terms proportional to the power corrections, we use
C

eff(0)∗
9q (ŝ) which equals Ceff∗

9q (ŝ) with η(ŝ) = 1.
In B → Xq`

+`−decays cc̄-resonances are present via
B → Xq +(J/ψ, ψ′, ...) → Xq`

+`−. Their implementation
and the corresponding uncertainties in the B → Xs`

+`−
case have been discussed recently by us [20]. There are at
least four different Ansätze advocated in the literature in
this context, summarized below.

– The HQET-based approach [10], where the non-per-
turbative cc̄-contribution apart from the (J/ψ, ψ′, ...)-
resonances is implemented by the 1/m2

c terms in the
expression for dB1/q2/dŝ.

– One could add the resonant cc̄-contribution, para-
metrized using a Breit-Wigner shape with the normal-
izations fixed by data, to the complete perturbative
contribution resulting from the cc̄-loop. This scheme
has been used in a number of papers [17,15,14,20].

The effective coefficients including the cc̄-resonances are
defined as

Ceff
9q (ŝ) ≡ C9η(ŝ) + Y q(ŝ) + Yres

q(ŝ) , (11)

where Y q(ŝ) has been given earlier and Yres
q(ŝ) in this

scheme is defined as:

Yres
q(ŝ) =

3π
α2 κ

(
−V ∗

cqVcb

V ∗
tqVtb

C(0) − V ∗
uqVub

V ∗
tqVtb

(3C3 + C4 + 3C5 + C6)
)

×
∑

Vi=ψ(1s),...,ψ(6s)

Γ (Vi → `+`−)MVi

MVi

2 − ŝ mb
2 − iMVi

ΓVi

, (12)

with C(0) ≡ 3C1+C2+3C3+C4+3C5+C6. In what follows
we shall neglect the part ∼ V ∗

uqVub

V ∗
tqVtb

in (12) in our numerical
analysis, since the particular combination of the Wilson
coefficients appearing in this term is strongly suppressed
compared to C(0). Further, since data only determines the
product κC(0) = 0.875 [8], we keep this fixed. For ease of
writing, we call this approach the AMM approach [17].

The remaining two approaches are the following:

– The LSW-approach [23]: Here, for the non-resonant
cc̄-contribution, only the constant term in g(m̂c, ŝ) is
kept. Calling it g̃(m̂c, ŝ), it is given by g̃(m̂c, ŝ) =
− 8

9 ln(mb/µ) − 8
9 ln m̂c + 8

27 . The resonant cc̄ part is
essentially as given in (12).

– The KS-approach [22], in which the function Ceff
9q (ŝ) is

parametrized using a dispersion approach. For details
and further discussions of this approach, we refer to
[22,20].

InB → Xd`
+`− decays, in addition to the cc̄ bound states,

also the uū bound states have to be included in the de-
cay amplitudes. We have calculated the dilepton invariant
mass distribution, using the Breit-Wigner shape for the
resonances, as discussed earlier, and taking the widths and
partial leptonic widths from the Particle Data Group [8].
However, numerically the uū-resonant part is less impor-
tant, as the leptonic branching ratios B(V 0 → e+e−) and
B(V 0 → µ+µ−) for the dominant resonances V 0 = ρ0, ω
are small [8]. Moreover, their effect is reduced by impos-
ing a cut on the dilepton invariant mass, say q2 > 1GeV2,
which we have explicitly checked. Higher states like ρ′, ω′
have larger widths and are thus expected to play minor
roles due to their smaller branching ratios in dilepton
pairs.

In the three approaches discussed above (AMM, LSW,
KS) we include the 1/m2

b-corrections, calculated in the
phenomenological Fermi motion model (FM) [18], which
implements such effects in terms of the B-meson wave
function effects. The implementation of the FM model in
B → Xs`

+`−decays in the dilepton invariant mass distri-
bution can be seen in [15], which we also adopt here for
the calculations of the distributions in B → Xd`

+`−. We
note that the branching ratios in the HQET-based 1/m2

b
approach and the FM-model are very close to each other
for identical values of the input parameters.

3 Branching ratios and CP asymmetries
in B → Xq`

+`−

3.1 Numerical input and definitions of the partial
branching ratios and CP asymmetries

We now specify how we determine theoretical uncertain-
ties in the branching ratios, the ratio ∆R, and CP asym-
metries in the decays B → (Xs, Xd)`+`−. The dispersion
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Table 1. Default values of the input parameters and the ±1 σ
errors on the sensitive parameters used in our numerical cal-
culations

mW 80.41 GeV
mZ 91.1867 GeV
sin2 θW 0.2255
ms 0.2 GeV
md 0.01 GeV
mb 4.8 ± 0.2 GeV
mt 173.8 ± 5.0 GeV
µ mb

+mb
−mb/2

Λ
(5)
QCD 0.220+0.078

−0.063 GeV
α−1 129
αs(mZ) 0.119 ± 0.0058
Bsl (10.4 ± 0.4) %

in the values of the observables due to the errors in the
input parameters mb, µ,mt, αs(mZ) (equivalently Λ(5)

QCD),
and Bsl, given in Table 1, is calculated by varying one
parameter at a time. To estimate the uncertainty from
the b-quark mass in the FM model, we explore the pa-
rameter space of this model with three sets of parameters:
(pF ,mq) = (520, 280), (450, 0), (245, 0) in (MeV,MeV),
which correspond to an effective b-quark mass of meff

b =
4.6, 4.8, 5.0 GeV, respectively. We set mc = meff

b (mb)−3.4
GeV in both the FM-model and HQET analysis. Com-
parison with the HQET prediction [15] is worked out for
λ1 = −0.20 GeV2 and λ2 = 0.12 GeV2, as the dependence
of the branching ratios on these parameters is small. The
individual errors are then added in quadrature to get the
final cumulative error.

We proceed by defining the partly integrated branch-
ing ratios (q = s, d):

∆Bq ≡
∫ q2max

q2min

dq2
dB(B → Xq`

+`−)
dq2

, (13)

together with ∆B̄q, for the CP-conjugate decays B̄ →
X̄q`

+`−, and the branching ratio averaged over the charge-
conjugated states:

〈∆Bq〉 ≡ ∆Bq +∆B̄q
2

, (14)

The CP asymmetry in the partial rates for B → Xq`
+`−

is defined as:

(aCP )q ≡ ∆Bq −∆B̄q
∆Bq +∆B̄q . (15)

We further decompose the partial branching ratios ∆Bq
in terms of the CKM factors

∆Bq = (|λ(q)
t |2D(q)

t + |λ(q)
u |2D(q)

u +Re(λ(q)∗
t λ(q)

u )D(q)
r

+Im(λ(q)∗
t λ(q)

u )D(q)
i )/|Vcb|2 , (16)

from which the CP conjugated branching ratio∆B̄q can be
obtained by substituting λ(q)

u,t → λ
(q)∗
u,t . Hence, the charge-

conjugate averaged branching ratio 〈∆Bq〉 is obtained
from ∆Bq by dropping the Im(λ(q)∗

t λ
(q)
u ) term. The CP

asymmetry is given by the expression:

(aCP )q = Im(λ(q)∗
t λ(q)

u )D(q)
i /(|Vcb|2〈∆Bq〉) . (17)

The functions D(q)
j , j = t, u, r, i depend on the input pa-

rameters, which we have specified in Table 1, and on the
interval in q2, specified by q2min and q2max. We shall always
work above the (ρ, ω)- and below the J/ψ-resonances in
the so-called low-q2 region with q2min and q2max taken as

q2min = 1.0 GeV2 ≤ q2 ≤ 6.0 GeV2 = q2max . (18)

We use the Wolfenstein representation of the CKM
matrix [24] with A = 0.819 and λ = 0.2196 fixed, as the
errors on these quantities are small [8]. The other two
parameters (ρ, η) are implicitly the subject of the present
work. Defining ρ̄ = ρ(1 − λ2

2 ) and η̄ = η(1 − λ2

2 ), we have
terms up to order λ6 [31]:

λ(s)
u = Aλ4(ρ− iη) ,

λ
(s)
t = −Aλ2

[
1 − λ2

2
+ λ2(ρ− iη)

]
, (19)

λ(d)
u = Aλ3(ρ̄− iη̄) , λ

(d)
t = Aλ3(1 − ρ̄+ iη̄) , (20)

and Vcb = Aλ2. It follows that
∣∣∣Vtd

Vts

∣∣∣2 = λ2(1 + λ2(1 −
2ρ̄))((1 − ρ̄)2 + η̄2) + O(λ6). Global fits of the CKM pa-
rameters have been performed in a number of papers [32–
34], with very similar (though not identical) results. For
illustration purposes, we shall use the results of the CKM
fits from [32], yielding:

ρ = 0.155+0.115
−0.105 , η = 0.383+0.063

−0.060 . (21)

3.2 Parametric dependence of the branching ratios
and CP asymmetries

We study the scale (µ)-dependence of the branching ra-
tios along the lines followed in [25] in the B → Xsγ case.
Thus, instead of varying the scale µ between mb/2 and
2mb in the full expression for the respective branching ra-
tios (the naive method), the scale-dependence of the indi-
vidual terms involving different Wilson coefficient com-
binations is calculated independently and the resulting
errors are added in quadrature. It is a conservative ap-
proach and avoids the possibility of accidental cancella-
tions of the scale-dependence in the various terms, which
takes place in the SM in both the B → Xsγ case [25]
and in B → Xq`

+`−, as shown here. For the branch-
ing ratio in B → Xq`

+`−decays the relevant coefficients
are: |C10|2, |Ceff

9 |2, Re(Ceff
7 Ceff

9 ) and |Ceff
7 |2. Of these, C10

does not renormalize, however, there is a residual depen-
dence on µ from the normalization for which inclusive
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Fig. 1. Renormalization scale (µ)-dependence of the individual terms and the partly integrated branching ratios ∆Bs for
the decay B̄ → X̄s`

+`− a and ∆Bd for B̄ → X̄d`+`− b, calculated in the AMM-approach. The solid, dotted, dashed, long-
short dashed curves correspond to the contributions proportional to the effective Wilson coefficients |Ceff

7 |2, |C10|2, |Ceff
9 |2 and

Re(Ceff
7 Ceff

9 ), respectively. The resulting µ uncertainty in the branching ratio, obtained by adding the weighted errors in
quadrature, is indicated by the shaded area

Table 2. Values of the charge-conjugate averaged partial branching ratios
〈∆Bs〉 and 〈∆Bd〉 and the CP asymmetries (aCP )s and (aCP )d, in the four
LD-approaches AMM [17], KS [22], LSW [23] and HQET [10], discussed in the
text. In the top part of the table (above the horizontal line), the parameters
are fixed to their central values given in Table 1 and (21). In the lower part of
the table, the parametric dependence of the observables on mb, mt and Λ

(5)
QCD,

calculated using the AMM-approach, is listed

〈∆Bs〉[10−6] (aCP )s[%] 〈∆Bd〉[10−8] (aCP )d[%]
AMM 2.22 -0.19 9.61 4.40
KS 2.05 -0.18 8.83 4.09
LSW 2.31 -0.19 9.98 4.51
HQET 2.06 -0.17 8.93 4.02
mb = 4.6GeV 2.15 -0.19 9.29 4.48
mb = 5.0GeV 2.32 -0.18 10.03 4.29
mt = 178.2GeV 2.36 -0.18 10.18 4.18
mt = 168.2GeV 2.10 -0.20 9.06 4.63
Λ

(5)
QCD = 0.298GeV 2.20 -0.16 9.52 3.74

Λ
(5)
QCD = 0.157GeV 2.24 -0.22 9.70 5.03

semileptonic branching ratio is used, bringing in an ex-
tra αs(µ)-dependence.

The scale-dependence of the individual contributions
from the specified Wilson coefficients to the branching ra-
tios ∆B̄s and ∆B̄d and the branching ratios themselves,
are shown in Fig. 1a and b, respectively. We find for the
scale dependence of ∆B̄s an uncertainty (+9.0,−7.3)%,
measured from the reference value µ = mb. This is to

be compared with the corresponding uncertainties (+4.1,
−1.3)% calculated in the naive approach. The estimated
µ-dependent uncertainty in ∆B̄d is found to be (+7.7,
−7.6)%, compared to 2% in the naive approach.

The dependence of the charge-conjugate averaged
branching ratios 〈∆Bs〉 and 〈∆Bd〉, and the CP asymme-
tries (aCP )s and (aCP )d on the four schemes concerning
the cc̄-contribution is shown in the upper part of Table 2.
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For all these entries, we have fixed the parameters to their
central values given in Table 1 and (21). The dependence
of these observables on mb, mt and Λ(5)

QCD, obtained in the
AMM-scheme by varying only one parameter at a time, is
shown in the lower part of Table 2. For the central values
of ρ and η, the partial branching ratios are found to vary in
the four approaches in the range: 2.05 × 10−6 ≤ 〈∆Bs〉 ≤
2.31 × 10−6 and 8.83 × 10−8 ≤ 〈∆Bd〉 ≤ 9.98 × 10−8. For
the same values of ρ and η but taking into account in ad-
dition the rest of the parametric uncertainties in Table 2,
Bsl, and the scale-dependence from Fig. 1a and b, we find:

〈∆Bs〉 = (2.22+0.29
−0.30) × 10−6 ,

〈∆Bd〉 = (9.61+1.32
−1.47) × 10−8 . (22)

Thus, apart from the CKM-parametric dependence, we es-
timate ±13% uncertainty on 〈∆Bs〉 and somewhat larger,
±15%, on 〈∆Bd〉. These errors are significantly larger than
those which one comes across in the literature. The present
experimental bound is B(B → Xs`

+`−) < 4.2 × 10−5 (at
90% C.L.) [35]. We are not aware of a corresponding bound
on B(B → Xd`

+`−).
The branching ratio 〈∆Bd〉, calculated in HQET, is

shown in Fig. 2 as a function of the CKM parameter ρ for
three fixed values of η, which correspond to the central
value and the 95% C.L. bounds given in (21). The other
input parameters have been fixed to their central values
given in Table 1. In the allowed CKM parameter space,
this partial branching ratio varies by a factor 3. As the the-
oretical error from the rest of the parameters is estimated
to be ±15%, the measurement of 〈∆Bd〉 should allow us
to determine ρ and η. The ratio ∆R = 〈∆Bd〉/〈∆Bs〉 has
much less theoretical error, as shown below.

The CP asymmetry, (aCP )s defined in (15) in the
b → s case in the SM is small. Hence, its measurement
can be used to search for new sources of CP violation in
the b → s`+`− transition. Numerically, the CP asymme-
tries are more uncertain reflecting in particular the scale-
dependence of the functions D(q)

i . A qualitatively similar
behaviour has also been noted for the CP asymmetries in
the radiative decays B → Xs + γ and B → Xd + γ in
[37]. However, the scale-dependence of the CP asymme-
tries is more marked in the decays B → (Xs, Xd)`+`− due
to cancellations in two different products of the Wilson
coefficients entering in D

(q)
i . (Specifically, between Ceff

7

Im(Ceff
9q |u) and Im(Ceff

9q |uCeff∗
9q |t), with Ceff

9q |x denoting

the part in Ceff
9q which is proportional to the CKM factor

λ
(q)
x .) This can be seen in Fig. 3, where we show the µ-

dependence of the two mentioned contributions in D
(d)
i ,

and the function D(d)
i itself calculated in the naive and in-

dependent approaches. The function D
(s)
i is very similar

and hence not shown. The µ-dependence of D(d)
i in the

naive approach, shown by the long-short dashed curve, is
very marked and it gets further accentuated in the inde-
pendent approach, shown by the two dashed curves. For
the central values of the CKM parameters and estimating

Fig. 2. The charge-conjugate averaged partial branching ratio
〈∆Bd〉 in the HQET-approach for the decay B → Xd`+`−

as a function of the CKM parameter ρ for three values of η;
solid curve (η = 0.383), dotted curve (η = 0.5), dashed curve
(η = 0.27)

Fig. 3. Renormalization scale (µ)-dependence of the indi-
vidual contributions and the function D

(d)
i , calculated in the

AMM-approach. The solid and dotted curves correspond to the
contributions proportional to the effective Wilson coefficients
Ceff

7 Im(Ceff
9 |u) and Im(Ceff

9 |uCeff∗
9 |t), respectively. The naive

µ dependence is shown by the long-short dashed curve. The re-
sulting µ uncertainty in the independent approach is bounded
by the dashed lines
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Fig. 4. The ratio ∆R defined in (24), calculated in the HQET-
approach, as a function of ρ for three values of η; solid curve
(η = 0.383), dotted curve (η = 0.5), dashed curve (η = 0.27)

the µ-dependence in the independent approach, we find:

(aCP )s = −(0.19+0.17
−0.19)% ,

(aCP )d = (4.40+3.87
−4.46)%. (23)

The corresponding numbers in the naive scale-dependent
method are: (aCP )s = −(0.19+0.12

−0.13)%, and (aCP )d =
(4.40+2.77

−3.23)%. In either case, Fig. 3 underscores the im-
portance of calculating the next-to-leading order effects
in (aCP )q.

3.3 Extraction of
∣∣∣Vtd

Vts

∣∣∣
For a precise determination of |Vtd|

|Vts| (equivalently the CKM
parameters), we calculate the ratio:

∆R ≡ 〈∆Bd〉
〈∆Bs〉 . (24)

In terms of the CKM parameters and the functions D(s)
t

and D(d)
j with j = t, u, r, defined earlier:

∆R = λ2× (25)

((1 − ρ̄)2 + η̄2)D(d)
t + (ρ̄2 + η̄2)D(d)

u + (ρ̄(1 − ρ̄) − η̄2)D(d)
r

(1 − λ2(1 − 2ρ))D(s)
t

,

where we have neglected terms proportional to λ(s)
u /λ

(s)
t .

A simpler form for ∆R follows, if one notes that the func-
tions D(d)

t and D
(s)
t are equal for all practical purposes

Fig. 5. Contours in the (ρ̄, η̄) plane following from assumed
values of the ratio ∆R; outer curve (∆R = 0.06), central
curve (∆R = 0.04), inner curve (∆R = 0.02). The overlapping
curves for each value of ∆R represent the uncertainty due to
the renormalization scale. Also shown is the unitarity triangle
corresponding to the central values of the CKM parameters
from the analysis of [32]

(see Table 3). Hence, setting D(d)
t = D

(s)
t , one has

∆R = λ2 (1 − ρ̄)2 + η̄2

1 − λ2(1 − 2ρ)
(26)

×
[
1 +

(ρ̄2 + η̄2)
((1 − ρ̄)2 + η̄2)

D
(d)
u

D
(s)
t

+
(ρ̄(1 − ρ̄) − η̄2)
((1 − ρ̄)2 + η̄2)

D
(d)
r

D
(s)
t

]
.

The overall CKM factor is just the ratio |Vtd|2/|Vts|2.
Note that the first (and dominant) term is independent
of the dynamic details. The ratio D

(d)
u /D

(s)
t is found to

be numerically small (but model dependent, varying be-
tween 1.03 × 10−2 for the KS-approach and 2.16 × 10−2

for the LSW approach). The ratio D(d)
r /D

(s)
t is, in general,

larger and it depends more sensitively on the estimate of
the long-distance cc̄-contribution, varying between +0.14
(for the LSW-approach) and −0.12 (in HQET). However,
the multiplicative CKM factor accompanying this term
in (26) being small comes to the rescue. For example, for
ρ̄ = 0.151 and η̄ = 0.374, this factor is only −0.012. Hence,
for these values, we find ∆R = (4.32 ± 0.03)%. For other
values of the CKM parameters, the uncertainty is larger
and we quantify it later. The ratio ∆R as a function of ρ is
shown in Fig. 4 for the HQET-method. The three curves
correspond to η = 0.5 (dotted curve), η = 0.383 (solid
curve), and η = 0.27 (dashed curve).

We now evaluate the theoretical precision in the deter-
mination of

∣∣∣Vtd

Vts

∣∣∣ from an eventual measurement of ∆R.
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Table 3. Values of the functions D
(d)
j , j = u, t, r, i and D

(s)
t , D

(s)
i defined in (25) and (17) in the four

schemes discussed in the text for the central values of the input parameters. The entries below the
horizontal line correspond to using the AMM scheme, and varying the input parameters, one each at
a time, fixing the rest to their central values

D
(d)
t [10−6] D

(d)
u [10−8] D

(s)
t [10−6] D

(d)
r [10−8] D

(d)
i [10−7] D

(s)
i [10−7]

AMM 2.31 3.75 2.30 20.96 -2.34 -2.34
KS 2.12 2.18 2.11 1.42 -2.00 -2.05
LSW 2.40 5.16 2.39 32.59 -2.50 -2.43
HQET 2.14 2.88 2.13 -24.89 -1.99 -1.94
mb = 4.6GeV 2.24 4.48 2.22 26.83 -2.31 -2.26
mb = 5.0GeV 2.41 3.47 2.40 18.86 -2.39 -2.31
mt = 178.2GeV 2.45 3.75 2.44 21.89 -2.36 -2.35
mt = 168.2GeV 2.18 3.75 2.17 21.61 -2.33 -2.33
Λ

(5)
QCD = 0.298GeV 2.29 3.39 2.28 20.71 -1.97 -1.95

Λ
(5)
QCD = 0.157GeV 2.33 4.15 2.32 21.35 -2.70 -2.73

The other uncertainties being insignificant, there are ba-
sically two sources of errors: (i) a small residual scale-
dependence; and (ii) the LD-scheme-dependent uncertain-
ty, which depends on the parameters ρ and η. In Fig. 5
we show the constraints on ρ and η from an assumed
value of ∆R with the LD-effects calculated in the AMM-
approach. For each value of ∆R, the practically overlap-
ping curves represent the effect of varying µ in the range
mb/2 ≤ µ ≤ 2mb. Numerically, the net µ uncertainty on
the ratio ∆R is found to be ±0.6%. The effect of the er-
rors of mt, αs(mZ) and the b-quark mass are smaller and
not shown.

The potentially largest uncertainty in ∆R, due to the
LD-effects, is shown in Fig. 6, where we have plotted the
constraints on ρ and η from assumed values of ∆R. The
four curves shown correspond to the LD-schemes: AMM,
KS, HQET and LSW. As remarked earlier, the LD-related
uncertainty is vanishingly small for the central values of ρ
and η, i.e., at or close to the apex of the drawn triangle.
However, for other points in the (ρ, η)-plane, the uncer-
tainty is perceptible but still small, except for regions of
the (ρ, η)-plane which are already ruled out from the ex-
isting CKM fits.

4 Theoretical precision on |Vtd/Vts|
from B decays

The ratio ∆R should be measurable at the Tevatron, the
later phase of the B-factories, and certainly at the LHC.
The merit of ∆R lies in the theoretical precision on
|Vtd/Vts| (or on the unitarity triangle) which we have esti-
mated here and found to be quite competitive with other
proposals in the market, some of which are reviewed be-
low.

The B0-B0 mixing ratio ∆Ms/∆Md can be expressed
as follows:

∆Ms

∆Md
=
MBs

MBd

(f2
Bs
B̂Bs)

(f2
Bd
B̂Bd

)
|Vts
Vtd

|2 . (27)

The achievable accuracy on Vtd/Vts depends, apart from
the experimental measurement error, on the knowledge of
the ratio of the hadronic matrix elements ξ ≡ fBd

√
BBd

/

fBs

√
BBs

, for which the current Lattice estimate is ξ =
1.14 ± 0.06 ± 0.03 ± 0.10 [3]. The errors reflect, respec-
tively, the actual calculational error of this ratio in the
quenched approximation, estimated effects of unquench-
ing, and from chiral loops. Thus, the present theoretical
error on this quantity is of O(10%) and it remains a the-
oretical challenge to improve this significantly. However,
the measurement of ∆Ms, for which the present experi-
mental lower bound is 12.4 ps−1 (at 95% C.L.)[33], may
turn out to provide the first measurement of Vtd/Vts, as
the central value of ∆Ms in the SM is around 14 ps−1

[32–34], which is not too far from the present limit.
Theoretical precision on ∆R is comparable to the one

on the corresponding ratio of the branching ratios involv-
ing the CKM-suppressed decay B → Xd+γ and the CKM-
allowed decay B → Xs + γ [36,37]. Defining the ratio of
the branching ratios as (implied are charge-conjugate av-
erages)

R(dγ)/sγ) ≡ 〈B(B → Xd + γ)〉
〈B(B → Xs + γ)〉 , (28)

the ratio R(dγ)/sγ) gives a constraint on the CKM matrix
elements which is very similar to the one given by ∆R
(compare (26) in [37] and (26) here). Theoretical error on
R(dγ/sγ) is estimated to be at most a few percent in [37],
comparable to the one on ∆R. In hadronic collisions, the
ratio ∆R is more likely to be measured than R(dγ/sγ).

We also mention here the exclusive radiative decays
B → (ρ, ω)γ and B → K∗γ, whose ratios of the branch-
ing ratios can also be used to determine |Vtd/Vts| [38].
The expected theoretical accuracy on the ratio B(B± →
ρ± + γ)/B(B± → K∗± + γ) is, however, not anticipated
to be better than O(20%) [39]. The corresponding LD-
corrections in the ratios of neutral B-decays, B(B0 →
(ρ0, ω)+γ)/B(B0 → K∗0 +γ), are expected to be smaller
[39,40] due to their being both colour and (electric)-charge
suppressed, hence reducing the theoretical uncertainty,



628 A. Ali, G. Hiller: A theoretical reappraisal of branching ratios and CP asymmetries

Fig. 6. Contours in the (ρ̄, η̄) plane following from assumed
values of the ratio ∆R; outer curve (∆R = 0.06), central curve
(∆R = 0.04), inner curve (∆R = 0.02). The solid, dotted,
dashed, long-short dashed lines correspond to the AMM, KS,
HQET and LSW approaches, respectively, for the central val-
ues of the parameters given in Table 1. Also shown is the uni-
tarity triangle corresponding to the central values of the CKM
parameters from the analysis of [32]

but probably not better than ±10%. Finally, we also note
the constraints on |Vtd/Vts|, which can be obtained from
the measurements of the ratios of some exclusive two-body
non-leptonic decays, such as B(B0 → K∗K0)/B(B0 →
φK0), advocated in [41]. This method may provide in-
teresting results on the CKM ratio, but once data are
available on the FCNC radiative and semileptonic decays
discussed above, they are expected to provide more reli-
able information on the CKM matrix elements Vtd and
Vts. In particular, the ratio ∆R may provide one of the
most precise determinations of |Vtd/Vts|.

We hope that the results presented here will help focus
attention on experimental measurements of the branching
ratios and CP asymmetries in the FCNC decays B →
(Xd, Xs)`+`−. We also underline the need to calculate the
next-to-leading order corrections in the CP asymmetries
to tame the scale dependence.
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